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a b s t r a c t

Although cognitive activity has been modeled through the lens of dynamical systems theory, the
field lacks robust demonstrations in the learning of mathematical concepts. One empirical context
demonstrating potential for closing this gap is embodied design, wherein students learn to enact
new movement patterns that instantiate mathematical schemes. Changes in students’ perceptuomotor
behavior in such contexts have been described as bearing markers of systemic phase transitions, but
no research to date has characterized these dynamics quantitatively. This study applied a nonlinear
analysis method, continuous cross-Recurrence Quantification Analysis (RQA), to touchscreen data
excerpts from 39 study participants working with the Mathematics Imagery Trainer on the Parallel
Bars problem. We then conducted linear regression analysis of a panel of five RQA metrics on learning
phase (Exploration, Discovery, and Fluency) to identify how nonlinear dynamics changed as fluency
developed. Results showed an increase in determinism from the Exploration to the Discovery phase,
and an increase in recurrence rate, trapping time, mean line length, and normalized entropy from
Discovery to Fluency phases. To put these dynamics in context, we qualitatively contrasted the RQA
metric trajectories of two case study participants who developed different degrees of fluency. Our
results support the hypothesized existence of phase transitions in the human–technology dynamical
system during a math learning task. More broadly, this study illustrates the purchase of nonlinear
methods on multimodal mathematics learning data and reveals perceptuomotor learning dynamics
informative for the design and use of embodied-interaction technologies.

© 2021 Elsevier B.V. All rights reserved.

Embodied approaches to epistemology that center dynamic
body-environment in knowledge development (Newen, Bruin, &
Gallagher, 2018) face the task of explicating human capacity
for engaging in higher cognition such as mathematical reason-
ing. To scale these heights, scholars have been elaborating rel-
evant theory (Bruineberg, Chemero, & Rietveld, 2019; Gallese &
Lakoff, 2005; Maturana & Varela, 1992; Menary, 2015; Stephen,
Dixon and Isenhower, 2009; Winter & Yoshimi, 2020), conjec-
turing implications for educational practice (Núñez, Edwards, &
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Matos, 1999; Shapiro & Stolz, 2019), and evaluating their posi-
tions empirically (Gallagher & Lindgren, 2015; Hutto, Kirchhoff,
& Abrahamson, 2015). In particular, design-based educational
researchers of cognition, teaching, and learning have been inves-
tigating relations between enacting movement forms and devel-
oping Science, Technology, Engineering, and Mathematics (STEM)
concepts (DeLiema, Enyedy, & Danish, 2019; Duijzer, Shayan,
Bakker, van der Schaaf, & Abrahamson, 2017; Lindgren, Morphew,
Kang, & Junokas, 2019; Segal, Tversky, & Black, 2014; Smith,
King, & Hoyte, 2014; Walkington, Chelule, Woods, & Nathan,
2019; Zohar & Levy, 2016). Considerable research on the rela-
tion between learning to move in new ways and learning new
mathematical concepts has centered upon educational activities
created according to principles of embodied design (Abrahamson
et al., 2020; Abrahamson & Sánchez-García, 2016). Embodied
design is a pedagogical approach to building learning environ-
ments that seeks to ground STEM content in students’ inherent
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perceptuomotor capacity (Abrahamson, 2009, 2014, 2019). Quali-
tative analysis of learners solving embodied-design problems res-
onates with dynamical systems theory, which views development
as self-organized and emergent from decentralized interactions.
Embodied-design learners’ interactions with their environment
give rise to new movement coordination patterns unfolding at
multiple timescales (e.g. Duijzer et al., 2017). Do learners indeed
constitute a complex dynamical system? Is embodied mathemat-
ics learning a non-linear process? Do students’ behaviors, like
other dynamical systems, transition across a succession of distinct
dynamically stable phase states, as a horse transitions from walk
to trot, canter, and gallop?

To date, research on the embodied-design learning process has
analyzed data from students’ multimodal perceptuomotor behav-
ior using qualitative methodologies (e.g., Abrahamson, Trninic,
Gutiérrez, Huth, & Lee, 2011), statistical modeling (e.g., Duijzer
et al., 2017; Ou, Andrade, Alberto, Bakker and Bechger, 2020;
Ou, Andrade, Alberto, van Helden and Bakker, 2020) and ma-
chine learning (e.g., Abdullah et al., 2017). Our current study is
motivated by the belief that in light of the seemingly dynami-
cal processes observed, educational researchers could enrich the
learning sciences’ toolkit by taking up theoretical and method-
ological tools from the movement sciences (cf. Beilock, 2008),
specifically dynamical systems theory and coordination dynam-
ics. We propose and test an addition to the toolkit for multimodal
learning analytics of embodied design from the dynamical sys-
tems field that we argue offers traction on dynamical features
in embodied learning data: Recurrence Quantification Analysis
(RQA). This paper aims to bring RQA to bear upon data from
an embodied-design context: the Mathematics Imagery Trainer
for Proportion—Parallel Bars problem (henceforth, MIT-P). We
use RQA to quantitatively characterize the nonlinear dynamics
of bimanual coordination associated with different phases of em-
bodied learning: Exploration, Discovery, and Fluency. We propose
that RQA stands to enable education researchers to get an analytic
handle on the microprocesses of discovery, in turn informing
teaching techniques and the design of educational technology.

To frame this study, we first review embodied cognition in
STEM education research. We then introduce our theoretical
framework, drawn from coordination dynamics and dynamical
systems, and present how this can be applied to our study
context, the MIT-P. Finally, we provide an introduction to the
central method in this paper, cross-RQA.

0.1. Embodied cognition and STEM education research

In recent decades, theories of embodied cognition in the cog-
nitive sciences have brought the dynamic interactions within and
between body and environment to the forefront in research on
learning and cognition. Philosophers of cognitive science are far
from any consensus on the validity, viability, coherence, or reach
of embodied cognition models (Barsalou, 2010; Kiverstein and
Clark, 2009; Newen et al., 2018; Shapiro, 2014). However, embod-
ied cognition has stirred significant resonance within the learning
sciences and STEM education (Hall and Nemirovsky, 2012). Re-
cent technological innovations for multimodal measurement also
provide unprecedented opportunities for measuring perceptuo-
motor learning processes. For example, eye tracking has enabled
STEM researchers to measure how study participants attend to
visual displays (Abrahamson, Shayan, Bakker, & Van der Schaaf,
2016; Alemdag & Cagiltay, 2018; Richardson & Spivey, 2004;
Shvarts, 2018). The collective evolution of theory, technology,
and methodology has led researchers to investigate the role of
physical movement in STEM learning (Abrahamson, 2018; Abra-
hamson & Bakker, 2016; Brooks, Barner, Frank, & Goldin-Meadow,
2018; Fadjo, Hallman, Harris, & Black, 2009; Hall and Nemirovsky,

2012; Kim, Roth, & Thom, 2011; Lindgren & Johnson-Glenberg,
2013; Nathan & Walkington, 2017; Sinclair & Gol Tabaghi, 2010),
in particular as they solve problems designed to foster early
grips on STEM concepts (Hutto et al., 2015). We focus here on
mathematics education, in which embodied perspectives have led
researchers to explore how students’ development of new per-
ceptual orientations towards sensory displays carry mathematical
meanings (Abrahamson, Lee, Negrete, & Gutiérrez, 2014; Alibali &
Nathan, 2012; Ferrara, 2014; Núñez et al., 1999; Radford, 2015;
Roth, 2014; Sinclair & de Freitas, 2014). This line of research re-
juvenates a long tradition in cognitive developmental psychology
of tracing the ontogenesis of conceptual learning in the percep-
tual organization of motor exploration (Allen & Bickhard, 2013;
Arsalidou & Pascual-Leone, 2016; Piaget, 1971).

Situated enactment theory (Chemero, 2009; Clancey, 2008;
Greeno, 1998; Hutto & Myin, 2013; Noë, 2006) suggests that
when students develop new motor control capacity, they are
also developing new perceptual forms that guide these actions,
forming new cognitive structures (Varela, Thompson, & Rosch,
1991). Enactivist epistemology rejects modeling the mind as an
isolated input–output module that processes amodal symbolic
information; instead, cognition is conceptualized as inherently
modal activity that extends through the body into the natural
and cultural ecologies (Anderson, 2003; Kiverstein, 2012; Wilson,
2002). A stronger position supported by cognitive psychology
studies asserts that the enactment of complex motor actions is
contingent not on developing new motor coordinations per se,
but rather on identifying perceptual Gestalt structures in the
environment that facilitate coordinated movement (Mechsner,
2003, 2004; Mechsner, Kerzel, Knoblich, & Prinz, 2001). These
views lend researchers of mathematics cognition a renewed epis-
temological foundation to theorize conceptual learning as hinging
on developing perceptual patterns that emerge as students at-
tempt to accomplish tasks within natural and cultural situations
(e.g., Steffe & Kieren, 1994; von Glasersfeld, 1987). In turn, as we
explain in the next section, foregrounding the role of situated per-
ceptions in cognitive processes has suggested to some researchers
that conceptual learning is a nonlinear process that may resemble
change processes in nonlinear material systems, namely, phase
transitions between dynamically stable states.

As a framework, embodied design draws from enactivism’s
theoretical argumentation for the successful enactment of new
movement patterns as constitutive of mathematical learning.
Within mathematics education research, embodied design radi-
calizes earlier positions respecting the putative imagistic–
kinaesthetic core of mathematical reasoning, as expressed by
neo-Piagetians (Arnon et al., 2013; Kalchman, Moss, & Case, 2000;
Steffe & Kieren, 1994; von Glasersfeld, 1987), enactivists (Kamii
& DeClark, 1985), and cognitive linguists (Núñez et al., 1999). As
such, embodied design aligns better with lines of research (Ne-
mirovsky, Kelton, & Rhodehamel, 2013; Nemirovsky, Tierney, &
Wright, 1998; Sinclair & de Freitas, 2014; Sinclair & Gol Tabaghi,
2010; Vogelstein, Brady, & Hall, 2019) that seek to theorize
students’ increasing capacity to perform coordinated motor ac-
tions as intrinsic, rather than merely contextual, to grounding
mathematical concepts. Embodied design reimagines instruc-
tional design from an enactivist lens, crystalizing and studying
the implications of this theoretical view for pedagogical practice.

0.2. Coordination dynamics and dynamical systems theory

Coordination dynamics has been inspired greatly by the dy-
namical systems approach (Kelso, 1995; Richardson & Chemero,
2014; Stephen, Boncoddo, Magnuson and Dixon, 2009; Stephen,
Dixon et al., 2009; Thelen & Smith, 1994, 2006), especially in the
effort to model the emergence of movement forms. These models
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define and operationalize theoretical constructs that illuminate
what is common to the structure and dynamics of diverse sys-
tems, including biological organisms, as they agitate and transi-
tion between functionally adaptive states. In this article, we draw
on these interrelated fields to understand embodied learning of
curricular content. We argue that constructs and techniques from
these fields can be productively applied to analyzing learning as
goal-oriented adaptation in situated interaction (Allen & Bick-
hard, 2013; Anderson, Richardson, & Chemero, 2012; Hilpert &
Marchand, 2018; Jacobson, Kapur, & Reimann, 2016; Stephen,
Dixon et al., 2009).

A core construct in coordination dynamics is the phase: a
stable dynamic or time-evolutionary state of a system. A phase
transition is a change from one phase to another, such as from the
liquid to the gaseous state of water. Stable, functionally adaptive
higher-order patterned phase states, here liquid form and gaseous
form, are also referred to as attractors. Phase transition results
from a change in control parameters (Kostrubiec, Zanone, Fuchs,
& Kelso, 2012) in the task or environment. In the case of water,
the control parameters of pressure and temperature drive water’s
transition from a liquid to a gaseous phase state. Phase transition
can manifest as shift or bifurcation. Shift is a slight change of
pattern maintaining the overall configuration, whereas bifurca-
tion is an abrupt reconfiguration of the pattern (Kostrubiec et al.,
2012). The result of a phase transition is a change in an emer-
gent relational quality created through the interaction between
the system’s components, known as an order parameter (Kelso,
2000). For liquid and gas, the order parameter is density. In living
systems, an example of a phase transition is a horse’s transitions
from walking to trotting, cantering, and galloping, each an attrac-
tor state (Schöner, Jiang, & Kelso, 1990). The order parameter is
leg movement configuration; for example in walking, the horse
will move each leg in sequence, while in trotting it will move legs
in diagonal pairs. The phase transitions among these attractors
are driven by changes in speed (control parameter).

A classic example from coordination dynamics (Haken, Kelso,
& Bunz, 1985) examines finger movement coordination. Study
participants are asked to wag both index fingers simultaneously
in parallel (like windshield wipers) at an accelerating rate. In-
variably, at some point, the fingers begin moving not in parallel
but in symmetry, moving towards the midline at the same time.
Researchers model this change in movement patterns as a phase
transition between two dynamically stable systemic attractors:
parallel movement and symmetrical movement. The angle of
offset between the fingers is the order parameter; speed of move-
ment is the control parameter. These results have been analyzed
in terms of neuro-muscular (Kelso, 1984) as well as percep-
tual (Mechsner et al., 2001) constraints. Coordination dynamics
constructs have been extended beyond movement patterns to
describe phenomena such as the development of human agency.
Infants’ discovery of their causation of events in their world has
been modeled as a phase transition in the infant–environment
system (Kelso, 2016). We propose that fluency acquisition in
embodied design functions the same way, with different patterns
of movement fluency corresponding to different phases in the
system.

0.3. Study context: The Mathematics Imagery Trainer for Proportion

Building upon prior qualitative analyses (e.g., Abrahamson
et al., 2014), we apply coordination dynamics constructs to an-
alyze data collected in an embodied design environment, the
MIT-P. In the MIT-P variant used in this dataset, users manipu-
lated two parallel bars (Fig. 1) originating at the bottom of the
screen. The bars appear once the user touches the screen and are
initially red. Participants change the bars’ height by sliding the

tops of the bars upwards or downwards with their index fingers.
As their heights are manipulated, the bars turn green whenever
the ratio of the left bar’s height to that of the right bar’s height
fulfills a secret ratio, here 1:2. That is, the left bar needs to be half
the height of the right bar for the bars to turn green. The goal of
the task is to discover how to move both fingers over the screen
while maintaining the bars green, such that the right finger moves
at twice the speed of the left. In later stages of the interview, a
grid and then numbers are overlaid onto the screen, and other
secret ratios are explored. We limited our analysis in this paper
to the stage before the introduction of these additional elements.

Participants exhibit a rich range of strategies and trajectories
in working with the MIT-P, but most pass through two key
transitions. The first is finding a green position for the first time.
Upon finding green, participants begin to move in more directed
ways based on their concepts of what invariant feature elicited
the green feedback. The second key transition is central to the
design goal of the MIT-P. The MIT-P activity was designed to
challenge students to move in a new way that grounds the
concept of proportionality. In particular, it challenges students’
common ‘‘additive’’ assumption that the difference between two
quantities should remain constant as the quantities increase,
i.e. that 1:2 is equal to 2:3 is equal to 3:4. The movement pattern
that corresponds to this assumption is to move the hands while
maintaining an equal distance between them. The MIT-P presents
a challenge to this approach because moving in this way will
repeatedly bring the learner out of the green since in fact the
distance between the hands must grow and shrink as the hands
move over the screen: a ‘‘multiplicative’’ way of moving. Discov-
ering how to move multiplicatively is the critical breakthrough
that grounds students’ ability to move fluently in green.

We propose that MIT-P activity milestones can be concep-
tualized as phase transitions. Note several similarities between
Kelso’s classical finger experiment and the MIT-P activity: both
contexts present participants with a bimanual motor-control task,
and both procedures engender a transition from one way of mov-
ing to another. From a dynamic-systems theoretical perspective,
both contexts introduce a task demand that perturbs a func-
tioning enactment to the point that it becomes untenable and
is then reconfigured. In the MIT-P task, we submit, the control
parameter is conceptual: the technology’s embedded mathemat-
ical function and its particular numerical values, such as a 1:2
ratio, perturb students who have not yet learned proportional
reasoning. Learners are required to transition into a movement
form they cannot as yet define formally. Displacing the fingers at
equivalent speeds fails to yield the task criterion of success (green
feedback), so a new movement form must be sought. The MIT-P’s
order parameter is the distance between the two hands relative to
the height: a fixed hand-to-hand distance results in red feedback,
whereas a distance that grows at a particular rate correlative to
the hands’ overall height results in the favorable green feedback.

0.4. Recurrence quantification analysis

RQA is a nonlinear analysis method used for quantifying re-
currence or coupling in a dynamic system. It offers a means
to visualize and quantify dynamic characteristics of time series
such as patterns in their repetition, periodicity, stability, order,
and predictability (Balasubramaniam, Riley, & Turvey, 2000; Riley,
Balasubramaniam, & Turvey, 1999). Originating in the field of
physics, RQA has since been taken up for the study of complex
systems in such diverse applications as physiology, economics,
joint action, cognition, and communication. A full review of this
literature is beyond the scope of this article. However, it is worth
highlighting those few studies that have begun to apply RQA to
research in academic contexts as well as research on problem-
solving. Several studies use RQA to study the degree of synchrony
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Fig. 1. User interacting with the MIT-P. Note. The bars turned green in the right image because the height of the left bar is in a 1:2 ratio with the height of the
right bar. The pink circles show overlays of eye tracking data.

across team members on collaborative tasks, either electrodermal
activity (Dindar, Alikhani, Malmberg, Järvelä, & Seppänen, 2019)
or speech rate, body movement, and team interaction (Amon,
Vrzakova, & D’Mello, 2019). Others use RQA to improve assess-
ment, either in predicting self-explanation reading comprehen-
sion quality from linguistic sequences (Likens, McCarthy, Allen,
& McNamara, 2018), comparing response time complexity across
dyslexic and nondyslexic beginning readers’ word-naming (Wij-
nants, Hasselman, Cox, Bosman, & Van Orden, 2012), or evaluat-
ing children’s false beliefs through the dynamic stability of their
hand movements in a balancing task (Fleuchaus, Kloos, Kiefer,
& Silva, 2020). Of most relevance to the present study, Stephen,
Boncoddo et al. (2009) use the RQA metric of entropy to predict
the moment of insight in problem-solving about rotating gears.
They model discovery of a consistent relation amongst gears
as self-organization of a new cognitive structure. The present
paper builds upon this work by examining the dynamics of both
discovery and fluency-development in the context of intention-
ally cultivated, conceptual mathematical cognitive structures in
an embodied design environment, guided by recent advances in
applying embodiment theory to math pedagogy.

In the following paragraphs, we briefly introduce RQA and
its foundation, the recurrence plot. Recurrence plots offer a vi-
sualization of the evolution of dynamical time series data. Here,
we conduct cross-recurrence of two continuous time series, but
recurrence plots can be constructed for single or multiple time
series, and for continuous or categorical data.

Cross-recurrence plots map when two time-series have en-
tered the same state. The unit of analysis is the coordination of
the emergent system. For example, let us consider a hypothetical
dataset of left and right-hand heights where the heights range
from 1–10 inches. Each value in the time series is the mean
height of that hand in a 1-second interval. To build a recurrence
plot, we place the right-hand heights time series on the x-axis
and the left-hand heights time series on the y-axis so that we
can systematically compare every point in the right-hand series
to every point in the right-hand series (Fig. 2). When there is
alignment in states, a point is added to the plot. Blank spaces
indicate a lack of alignment. For example, the first left hand
height measurement, 3, appears in the first position on the y-
axis. It is compared to every state in the right-hand time series
along the x axis, and any time in the right-hand series that the
height is 3, a blue point appears on the plot (here, the first
and sixth columns). In the same way, the first left hand height
measurement appearing in the first position on the y-axis, also
3, is compared to every height in the right-hand series. Applying
this process to every number in each time series, we end up with
a visualization that shows us all of the times the two time-series
entered matching states, synchronously and asynchronously.

Fig. 2. Example cross-recurrence plot of right and left hand heights in a
hypothetical time series. Note. In this example RQA plot, each of 8 positions
recorded for the right-hand height is compared to all left-hand heights, and
reciprocally, each of the 8 positions recorded for left-hand height is compared
to all right-hand heights. Height states that align are indicated with a point on
the plot.

RQA metrics quantify features of the recurrence plot, including
the density of points and structures such as diagonal and vertical
lines. Diagonal lines appear when a sequence of several changing
states is taken up by both systems: for example, the 348 at
the start of both the left and right-hand time series creates a
diagonal line of length 3. This line appears on the line of syn-
chrony (marked here in gray) because the sequence happened
at the same point in both series. Meanwhile, the other diagonal
line on the plot in the upper right is slightly below the line of
synchrony because the left hand moved through these height
states just before the right hand. Thus, diagonal lines show how
many states in a row align for both systems, and their position
reveals the lag between when each time series moved through
these states. Vertical lines reflect times when the second time
series maintained the same state over time, while horizontal lines
reflect times when the first time series maintained the same state
over time.

Recurrence plots reveal the degree of repetition, the length
of repetitive sections, and the level of stability and structure in
a time series’ trajectory, and can reveal shifts between different
modes of behavior. RQA metrics permit quantification of these
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patterns and comparison of such dynamics over time or across
conditions or participants. Typical summary statistics such as
means and standard deviations can tell an incomplete or mislead-
ing story about complex behavioral dynamics; two time series
with the same mean might show different patterns in their reg-
ularity or degree of structure. RQA can provide a more complete
picture by treating variation over time not as noise but as a mean-
ingful dynamic of the system of study. Whereas statistical vari-
ability measures treat data as if each sample is independent, RQA
captures and characterizes sequential dependence, that is, the de-
pendence of each measurement in a time series upon those that
came before. Further, RQA does not assume that the contributions
of variables to the system are linear, offering a systems-level
trajectory view that allows for interaction-dominant dynamics.
This makes it an apt methodology for studying time-evolving
complex systems.

0.5. The current study

We analyze embodied design touchscreen data using cross-
RQA. Building upon prior work conceptualizing changes in move-
ment patterns in embodied design environments as phase transi-
tions, we offer a quantitative evaluation of the distinct dynamics
of previously qualitatively identified phases. The objective of this
paper is to document changes in the nonlinear dynamics of per-
ceptuomotor coordination associated with hypothesized phase
transitions in the human–technology dynamical system. This pa-
per analyzes the distinct RQA metric profiles associated with each
phase of embodied design learning across all 39 participants. We
then present a pair of contrasting case studies, analyzing dynam-
ics within and between phases by connecting the participant’s
RQA plot and metrics to the video of their interactions with the
task.

0.6. Research question

How do the nonlinear dynamics of bimanual coordination pat-
terns differ between Exploration, Discovery, and Fluency phases
of an embodied-design learning task?

We will first present the methods used, including an overview
of the dataset, the quantitative regression analysis methods, and
the qualitative case study methods. We will then present the
results of the regression analysis and case-study pair.

1. Methods

We conducted a secondary analysis of data collected through
task-based semi-structured interviews with the MIT-P (Duijzer
et al., 2017).

1.1. Materials and instruments

The MIT-P task was implemented using a touchscreen tablet
app. Researchers recorded the touchscreen position for each fin-
ger, the top of each bar, in y coordinates. Eye-tracking and video
data were collected throughout the interview using the screen-
based Tobii x2-30 model. Tobii Studio software overlaid the gaze
data on the video such that it was possible to see where on the
screen a participant was looking throughout the task. Transcripts
were written and translated from Dutch to English by the original
research team.

1.2. Participants

Forty-five students ages 9–11 attending grades 5 and 6 at pri-
mary schools in the Netherlands participated in the study. Tech-
nical issues caused data to be incomplete for eight omitted par-
ticipants. The 39 participants with full datasets for touchscreen
hand position coordinates were included in this analysis.

1.3. Procedure

Participants read instructions before the task inviting them to
find a way to make the bars green and to keep them green while
moving them (Duijzer et al., 2017). A researcher–tutor offered
augmented information (Thelen & Smith, 1994) and guidance
such as ‘‘find as much green as you can’’ (Thelen & Smith, 2006).

1.4. Data processing and variables

We included the following variables in this analysis: left and
right-hand height, rolling average proportion of time in green,
and rolling average proportion of time moving both hands while
in green (Table 1).

To compare phases in a consistent way across participants,
we set quantitative criteria reflecting key MIT-P task milestones
(see two examples in Fig. 3). We defined the beginning of the
Discovery phase as the first time the discovery marker variable
took on a value above 0.5, meaning a participant made green
for at least 10 of 20 consecutive seconds. The window size of
20 s captured that the participant is substantially engaging with
green rather than passing through it briefly without returning.
We defined the beginning of the Fluency phase as the first time
the fluency marker variable reached a value that was 80% of their
maximum fluency marker value for that individual for 10 s. This
threshold was set to mark when participants achieved moving-in-
green approaching their personal best. The window size for the
Fluency marker variable was shorter than for Discovery because
it was intended to capture a local dynamic of close-to-peak per-
formance rather than a general dynamic of frequently engaging
with green locations.

We overlaid the transition points determined through this
algorithm on a graph of the right- and left-hand heights over time
(Fig. 3) to check for outliers where automatically-determined
phase marker placement did not show face validity. The visual
inspection revealed one outlier participant who triggered their
Fluency phase by moving in green in a restricted area of the
screen only before engaging in more exploratory behavior again.
To check for undue impact of this outlier on the analysis, we ran
the statistical analyses once with the RQA metrics for the original
transition point and again with an alternate transition point set
by increasing rolling average windowsize to 20.

1.5. Regression analysis of RQA metrics

We conducted continuous cross-RQA on left- and right-hand
height data using the crqa package in R (Coco & Dale, 2014).
We selected recurrence parameters for each participant using
an optimization routine based on average mutual information
and false nearest neighbors methods (Coco & Dale, 2014), ap-
plying rescale and z-score normalization transformations. These
transformations align the positions of each hand according to
frequency of visitation; frequenting green positions establishes
positions where the right hand is roughly twice that of the left
as aligned. The overall level of recurrence detected through RQA
is shaped by the parameters (delay, embedding dimension, and
radius) used. For example, one could increase or decrease overall
recurrence by manipulating the radius parameter, which defines
the maximal distance between points to be considered recurrent:
a small radius yields few points, a large radius many. Following
conventions, RQA parameters for this analysis were set such that
recurrence rate for each participant’s overall plot was between 2
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Table 1
Summary of variables used in Recurrence Quantification Analysis (RQA).
Variable Type Scale Description
Hand height Continuous 0–1065 The y-axis position of each finger was recorded using the

touchscreen at a variable frequency of approximately
50–120 Hz. The average position was taken every 10 Hz
for this analysis. Missing data was forward-filled with the
last recorded value.

Discovery
marker

Continuous 0–1 A proxy for bar greenness was coded as 1 if the
left-hand y coordinate divided by the right-hand y
coordinate was between 0.4 and 0.6 for a given 100-ms
interval, and 0 otherwise.
The two-sided rolling average of this variable was then
taken with a window size of 20 s.

Fluency
marker

Continuous 0–1 Moving-in-green was coded as 1 if the left and the right
fingers changed position since the last measurement and
the green variable was equal to 1 for a given 100-ms
interval, and 0 if any or all three of these conditions
were not met. The two-sided rolling average of this
variable was then taken with a window size of 10 s.

Fig. 3. Example hand position time series’ transition points. Note. The dotted and solid lines indicate the start of the Discovery and Fluency phases respectively.
(a) Typical participant: Fluency phase begins when the participant moves smoothly in green. (b) Outlier participant: Fluency phase marker is triggered before the
smooth movements at the end of the time series. At the marker, their hands move over only a small fraction of the screen, followed by a long phase with very little
green.

and 2.5%.1 Recurrence metrics are meaningful moreso as a tool
for comparison than as a raw characterization of the data due to
their dependence upon the parameters used.

We regressed a panel of five RQA metrics resulting from this
analysis on learning phase to explore the impact of phase on
dynamics. Each RQA metric describes a different aspect of the
bimanual coordination system. Broadly speaking, recurrence rate
reflects degree of repetition, percent determinism the degree of

1 Although the recurrence rate is 2.5% for the whole time series, the
recurrence rate for segments or windows of that time series may be up to
100%. For example, if we were to model the location of two cats over 100 min,
we would set our radius parameter to get a total amount of togetherness of
around 2%. This might come out to defining recurrence as being within a radius
of 5 ft of each other. However, if we split our plot into a pre-dinnertime
phase and a dinnertime phase, we might find that during the pre-dinnertime
phase, recurrence rates were extremely low (0% of the plot is shaded) and
during dinnertime, recurrence rates were extremely high (100% of the plot is
shaded). That is, they were close together during 0% of pre-dinnertime, 100% of
dinnertime, and 2% of the overall measured period.

coupling and predictability, mean line length the predictability
and stability, normalized entropy the level of disorder, and trap-
ping time the degree of lingering of the left hand (Table 2).
For more details on these and other RQA metrics, see Marwan,
Romano, Thiel, and Kurths (2007).

The following statistical model was used five times, once to
address each RQA metric:

yi = �0 + �1 dphase2 + �2 dphase3 + "i

The regression coefficients �1 and �2 (for the dummy variables
dphase2 and dphase3) represent the mean difference in each RQA
metric of being in Discovery or Fluency, as compared to the
reference phase, Exploration. Regression coefficients were tested
against a significance level of 0.05.

This dataset is clustered: we have up to three data points per
participant, one per phase. In clustered data, error terms are often
correlated with each other by participant. We noted such het-
eroscedasticity in the determinism variable as well as the entropy
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Table 2
Summary of variables used in regression analysis.
Variable Type Scale Description
Recurrence rate Continuous 0–100 Recurrence rate is the percentage of the plot consisting of

recurrent points. It reflects the overall degree of repetition
across the two sequences.

Percent
determinism

Continuous 0–100 Determinism is the percentage of points on the plot that fall
on diagonal lines (length >1 point). It reflects the
predictability and degree of coupling in a system.

Mean line length Continuous 0–1/2 length
of time series

The mean line length is the average length of diagonal lines
(length >1 point) on the recurrence plot, corresponding to
the average length of coupled state sequences. It also reflects
the predictability of the system.

Normalized
entropy

Continuous 0–1 Shannon entropy is the distribution of line lengths in the
plot. It reflects the stability of coupling structures. An
increase in entropy reflects a decrease in the level of order in
the system. Normalized entropy is Shannon entropy
normalized by the number of lines in the recurrence plot.

Trapping time Continuous 0–1/2 length
of time series

Trapping time is the average length of vertical lines in the
recurrence plot. It reflects the average duration of a
connected state.

Phase Dummy 0–1 Phases were defined using the performance-based transition
criteria described above. Discovery and Fluency were
compared against Exploration, then against each other with
post hoc analysis.

variable. To ensure standard errors were not underestimated, we
used cluster-robust standard errors (Cameron & Miller, 2015),
an adjustment to standard error estimates in regression models
for grouped data, for all our models. We also ran the model
for entropy with and without data from two outlier participants
heavily affecting homoscedasticity of variances to check if these
outliers were affecting the power of findings. Another assumption
of the linear model is that residuals are normally distributed.
We applied a logarithmic transformation to the recurrence rate
and trapping time variables to better meet this assumption. Trap-
ping time, meanline, and determinism variables’ residuals did not
pass the Shapiro–Wilk normality of residuals test; however, with
the current sample size, this was not likely to have impacted
results (Ernst & Albers, 2017; Minitab, 2014).

1.6. Illustrative cases

We selected one prototypical and one contrasting case par-
ticipant to examine the evolution of their dynamics in more
detail using recurrence plots. For the prototypical participant, we
generated a recurrence plot for each phase in their fluency de-
velopment. This was not possible for the contrasting participant
since their latter two phases were so brief. To compare how dy-
namics evolved for each participant across the whole time series,
we graphed the change in each recurrence metric over time for
each participant using windowed recurrence plots. Windowed
plots are generated by calculating each of the recurrence metrics
repeatedly for a sliding ‘‘window’’ segment of the data, calculated
repeatedly at regular intervals across the time series.

Selection criteria for the representative participant were: (1)
representative trends trends in each RQA metric reflected statis-
tically significant effects of phase found in the linear regression
model (N = 7); (2) competence reached: green was maintained
throughout the Fluency phase (N = 29); (3) phase comparison
possible: all phases were long enough to generate recurrence plots
using the participants’ set of overall RQA parameters (N = 14);
and (4) full range of motion: the participant engaged with posi-
tions all over the screen across task phases (N = 22). The former
two criteria ensured the participant was illustrative of trends
across students, while the latter two ensured that phases were
readily comparable to each other. Three participants met all of
these criteria, from which one participant (Nils, pseudonym) was

selected randomly. To contrast with this typical case, we selected
the participant who spent the greatest relative amount of time in
the Exploration phase compared to the other two phases, Liam
(pseudonym). To enrich our analysis of these cases, we included
relevant information from the video, interview transcripts, and
graphs of their hand positions over time.

2. Results

2.1. Descriptive analysis

The mean start time of the Discovery phase was 2 min 2 s,
with a standard deviation of 1 min 58 s. The mean start of the
Fluency phase was 5 min 45 s, with a standard deviation of 1 min
46 s. Some participants spent too little time in a given phase
for RQA metrics to be calculable: 14 participants for the Explo-
ration phase, 10 for the Discovery phase, and 4 for the Fluency
phase. For example, some participants found green immediately
upon starting the activity, or went straight from finding green to
moving-in-green.

Boxplots of each RQA metric by phase show a general trend
of higher median levels in the Fluency phase than in prior phases
(Fig. 4). Data in each phase are generally normally distributed,
with the exception of left skew in determinism data in the Explo-
ration phase and normalized entropy in the Fluency phase, and
right skew in the mean line length and trapping time data for
the Exploration and Discovery phases, and recurrence rate in the
Fluency phase.

2.2. Regression analysis

From the Exploration to the Discovery phase, there was a
statistically significant estimated mean increase only in deter-
minism, which grew by an estimated 6.31% (t = 2.02, d.f. = 84,
p = 0.043) (Table 3). From the Discovery to the Fluency phase,
there were statistically significant estimated mean increases in
recurrence rate of 176% (t = 3.37, d.f. = 85, p = 0.001), meanline
of 14.83 points (t = 3.01, d.f. = 85, p = 0.003), normalized
entropy of 0.06 (t = 2.41, d.f. = 84, p = 0.016), and trapping time
of 150% (t = 1.47, d.f. = 84, p < 0.001) (Table 3). The proportion
of variance explained by phase was 17% for recurrence rate (R2 =
0.169), 13% for determinism and meanline (R2 = 0.126), 7% for
entropy (R2 = 0.066), and 27% for trapping time (R2 = 0.268).
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Fig. 4. Boxplots of RQA metrics by phase. Note: The boxplots did not show a clear change in median RQA metrics from the Exploration (1) to the Discovery (2)
phase. The interquartile range narrowed upwards for determinism. All median recurrence metrics increased in the Fluency (3) phase.

Table 3
Results of linear regression.
RQA Metric Phase Coefficient SE T Pr (> |t|)
Log (Recurrence Rate) Discovery �0.02 0.29 �0.07 0.941

Fluency* 1.01 0.30 3.37 0.001
% Determinism Discovery* 6.31 3.12 2.02 0.043

Fluency 1.83 1.34 1.37 0.170
Entropy (normalized) Discovery 0.00 0.03 �0.11 0.915

Fluency* 0.06 0.03 2.41 0.016
Mean line length Discovery 0.91 4.12 0.22 0.825

Fluency* 14.83 4.93 3.01 0.003
Log (Trapping time) Discovery 0.38 0.26 1.47 0.142

Fluency* 0.92 0.19 4.73 0.000

Note.
*Indicates statistically significant at the 5% level. Values in table compare each phase to the one directly prior (i.e.
Discovery to Exploration, Fluency to Discovery).

2.2.1. Outliers
We reran these models with the adjusted transition points for

the outlier participant with the atypical Fluency marker. Coef-
ficients for the Discovery and Fluency phases and the post hoc
comparison between Discovery and Fluency phases were 0%–16%
of baseline levels higher with the exception of the coefficient for
recurrence rate in Discovery, which was 1% lower. There were no
changes to the trend or statistical significance of model estimates.

The model for entropy was run a second time omitting two
outlier participants with Exploration phase entropy values below
25th percentile who were causing issues with homoscedasticity.
With these participants omitted, the entropy variable met the
homoscedasticity assumption. This analysis showed the same
overall trends: no statistically significant difference from Explo-
ration to Discovery (t = �0.56, d.f. = 79, p = 0.578) and a
statistically significant increase in estimated mean entropy of
0.07 from Discovery to Fluency (t = 2.63, d.f. = 79, p = 0.009).

2.3. Case studies

We present the learning trajectory of a prototypical learner,
Nils, alongside that of a learner who spent most of the time in

Exploration, Liam. We begin with a summary of their interactions
with the task before presenting the dynamics of these interac-
tions captured by recurrence plots and how RQA metrics evolved
for each participant.

2.3.1. Overview of learning trajectory
Nils’ learning trajectory was typical of participants in that he

steadily progressed from Exploration through Discovery to Flu-
ency (Fig. 5a). In the Exploration phase, Nils tried several common
bimanual exploration movement patterns: raising and lowering
hands together, then in alternation. Once the latter solicited his
first green position, he held one hand still while raising and
lowering the other to seek additional greens, starting again at
the bottom of the screen when this proved ineffective. Nils, now
considered to be in Discovery due to engaging green positions,
then began cycling through several approaches: (1) maintaining
the distance between his hands while raising and lowering them
(the additive strategy), (2) swapping hand heights, and (3) moving
each hand one by one. The former two strategies reflect embod-
ied hypotheses of what invariant gives rise to green, while the
latter reflects targeted exploration, both hallmarks of Discovery
strategies across participants. Of these strategies, only the latter
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Fig. 5. Time series of left and right bar heights and resulting green feedback. Note. The dotted and solid lines indicate the start of the Discovery and Fluency phases
respectively. (a) Nils began with rapid, varied Exploration strategies, followed by more systematic strategies during the Discovery phase, and finally, coordinated
movement-in-green spanning the full range of the screen in the Fluency phase. (b) Liam’s more slow, less varied Exploration phase lasted the majority of the time,
making green consistently only during the final 12 s of the task.

yielded a new green. Nils then described his strategy to the tutor:
‘‘try to make half’’. After several more inversions, he noted that
‘‘high on the right [...] will turn green’’. He then lowered his hands
incrementally, making green as he went. Entering the Fluency
phase, Nils, with encouragement from the tutor, then moved
from the bottom of the screen to the topin coordination, with
occasional stops for correction.

In contrast to Nils and most participants, Liam did not engage
in substantial Discovery or Fluency phases during this interview
segment (Fig. 5b). Like Nils, Liam began exploration by moving his
hands together at the same height. Unlike Nils, he persisted in this
strategy for the first 80s of the interaction until prompted by the
tutor, ‘‘You can move your hands independently’’. Following this
comment, Liam moved his fingers in opposite directions, yielding
his first green location two minutes into the task. Prompted by
the tutor to look for ‘‘more places on the screen’’ and to ‘‘move the
bars up and down so that they turn green again’’, Liam engaged
several idiosyncratic strategies, including moving the fingers in

opposite directions and moving the left hand down and the right
hand up and down. Intermittently, these strategies yielded green
positions very close to the first one he found. Towards the end
(the beginning of Phase 2 in the graph), the tutor asked Liam,
‘‘have you noticed some things?’’ and Liam responded, ‘‘I have
to put this [right hand] above, compared to that [left hand] while
moving the hands’’. Liam then lowered his hands simultaneously,
finding three new green locations along the way.

2.3.2. Recurrence plots by phase
Nils’ recurrence plots showcase distinct dynamics for each

phase. In Exploration (Fig. 6a), the plot is mostly white, indicat-
ing low coupling between the hands and low repetition overall.
Exploration exhibits low self-similarity; Nils tried a variety of
movements to seek the desired green feedback. In Discovery
(Fig. 6b), the plot shows a loosely dotted diagonal line through its
center, illustrating intermittent moments of green. The plot also
shows a line of points running parallel to the line of symmetry

Fig. 6. Exploration, Discovery, and Fluency Phase Recurrence Plots for Nils. Note: During the Exploration phase, the mostly empty recurrence plot shows low coupling
of the hands. In the Discovery phase, the plot shows intermittent points falling along the line of synchrony, reflecting coming in and out of the target ratio. In the
Fluency phase, the plot shows a series of thick squares populating the full line of synchrony, showing coordinated movement in the target ratio punctuated by a
series of regular, short pauses.
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Fig. 7. Exploration phase recurrence plot for Liam. Note: Liam’s Exploration
shows several distinct dynamics (thick diagonal lines, sparse plot, and vertical
structures) reflecting changing exploratory approaches.

caused by Nils swapping hand heights at different heights on the
screen. In Fluency (Fig. 6c), the plot shows a thick diagonal line
along the line of symmetry featuring a series of rectangles. This
plot reflects continuous synchrony between the time series for
each hand, here interpretable as moving-in-green. The rectangu-
lar structures reflect lingering in the same state. The plot reveals
that lingering behavior is higher at the start of the Fluency phase
(the large initial rectangle) and then decreases. Some degree of
rhythmicity appears in the lingering pattern, as rectangles repeat
with even spacing and size.

Liam functionally remained in the Exploration phase through-
out this interview segment. His recurrence plot (Fig. 7) shows
an initial diagonal line of synchrony between the hands, here
reflecting when he moved his hands at the same heights for
80s, in contrast to the varied strategies Nils engaged in at the
start of the task that yielded a blank plot. Liam’s plot becomes
sparser through the middle, corresponding to his diverging-finger
movements. Vertical structures appear towards the upper right
quadrant as Liam moves his left hand faster than his right.

2.3.3. Evolution of RQA metrics
Windowed RQA plots visualize how our focal participants’

bimanual coordination dynamics evolved over the time series.
Were changes gradual or abrupt? Focalized around the phase
demarcations we defined, or elsewhere?

Nils’ windowed RQA plots (Fig. 8) detail how his evolving dy-
namics affected RQA metrics across phases. Rather than gradual
increases in RQA metrics, the plots show abrupt and synchronous
change across metrics at the onset of the Fluency phase (Fig. 8).
Nils’ meanline and trapping time grew to 8 times their prior lev-
els, and his recurrence rate grew to more than 20 times its prior
level. Entropy also increased, and percent determinism flattened
near its ceiling value of 100%. These increases reflect newfound
predictability and stability in his coordination pattern. This point
in the interview corresponds to Nils expressing to the tutor
his rule for finding green. The dynamics of Nils’ performance
transformed in an abrupt and permanent way when he expressed
and demonstrated the rule that he had noticed. Although finding
green and engaging with green (Discovery) might seem like the
critical breakthrough in this task, we see that it is this concep-
tual breakthrough of how Nils thinks about the task that yields
transformed dynamics.

In Liam’s case, we do not see the abrupt increases observed
for Nils; Liam’s recurrence metrics generally decrease over the

course of the time series, with the steepest drop-off arising when
he stops testing the hands-together pattern at the 80s mark
(Fig. 9). This reflects the low degree of fluency observed in his
movements; Liam has not figured out the coordination dynamics
to solve this task.

3. Discussion and conclusion

This study used RQA to model the nonlinear dynamics of
learning in an embodied-design mathematics learning environ-
ment. We found distinct coordination dynamics across different
phases of movement-based mathematics learning. Linear regres-
sion of RQA metrics on phase showed an estimated mean increase
in determinism when students progressed from Exploration to
Discovery, and an estimated mean increase in recurrence rate,
mean line length, normalized entropy, and trapping time when
learners progressed from Discovery to Fluency. A prototypical
case study participant showed RQA metric increases onsetting
abruptly at the beginning of the Fluency phase, while a contrast-
ing participant who did not reach fluency showed RQA metrics
decreasing over time.

The results of the linear regression analysis support differen-
tiating learning phases of Discovery and Fluency as featuring dis-
tinct dynamics. In the MIT-P task, participants learned to move in
a new way that grounds mathematical conceptual understanding
of proportionality. Prior qualitative work has identified the land-
marks of engaging green feedback (Discovery) and performing
the mathematically-critical moving-in-green multiplicative pat-
tern (Fluency). The statistically significant differences in RQA
metrics across phases corroborate the distinctiveness of these
phases. Discovery showed higher predictability (determinism)
than Exploration; Fluency showed greater coordination (recur-
rence), stability and predictability (meanline), lag (trapping time),
and level of order (normalized entropy) in participants’ bimanual
movements. The case studies corroborate the presence of such
qualitative differences between phases: for the prototypical case,
Nils, RQA metrics increased abruptly at the onset of moving-in-
green, suggesting a break in dynamics. That such a pattern was
not observed in the contrasting case learner who maintained low
fluency suggests that these dynamics are not an inevitable by-
product of participating in the MIT-P activity but, rather, a feature
of fluency development.

A complex dynamical systems view of conceptual change
predicts that phase changes, ubiquitous in biological systems,
would manifest in learning data. Our results are consistent with
this hypothesized presence of phase transitions in the learner–
technology system. They suggest that learning, at least in an
embodied-design environment, is not a linear progression to-
wards a target. Learners’ dynamical interactive attempts to solve
the control problem under predetermined task- and environ-
mental constraints bring forth an adaptive reconfiguration of
sensory perception regulating the increasingly refined motor
enactment of the multiplicative movement pattern, thus satisfy-
ing the activity’s primary pedagogical objective. MIT-P discovery
offers a case of learners transitioning from one (pre-adapted)
working model of an interactive-inquiry situation to another
(adapted) (Karmiloff-Smith, 1988). The dynamics of motor be-
haviors reflect and constitute the implicit cognitive dynamics of
conceptual learning. This study shows the promise of a research
agenda approaching conceptual learning as a complex, nonlinear,
dynamical process. In particular, we provide preliminary support
for the traction of a dynamical, enactivist view in a context
often thought to be resistant to this perspective: mathematical
conceptual learning (Hutto et al., 2015). Our results offer empir-
ical fodder for debates around the still-contentious philosophical
stances on the nature of embodied cognition (Wilson, 2002),
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Fig. 8. Sliding window recurrence plots for RQA metrics across phases for Nils. Note. For all windowed plots, window size = 35 s, window step = 1 s, lag width =
5 s. Blanks on the plot correspond to phases with no recurrent points. Nils’ RQA metrics showed a sudden increase at the onset of the Fluency phase.

Fig. 9. Sliding window recurrence plots for RQA metrics across phases for Liam. Note. Liam’s RQA metrics decreased over the course of the time series.

supporting the viability of a radical enactivist approach (Hutto
& Myin, 2013).

By substantiating the effects of an enactivist approach to the
design of environments for teaching and learning mathematics,
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the present study carries implications for child–computer in-
teraction design. We found that learning environments geared
to embrace and guide perceptuomotor activity elicit changes in
motor dynamics. Students bring their implicit perceptuomotor
schemes to bear on tasks, then figure out new ways of mov-
ing concordant with feedback elicited through engagement with
the technological resources. As such, students keep grounding
the meaning of new mathematical concepts in enactive know-
ing. Our case study on Nils shows these changes to be asso-
ciated with concept development: Nils’ breakthrough into flu-
ency occurred immediately following his articulation of a rule
of making half. Thus, the present study’s results corroborate
the potential to foster conceptual change as an adaptive biman-
ual exploration for a better grip on the world (Abrahamson).
Bimanual-interaction technological systems like the MIT-P can
instantiate a broad spectrum of mathematical relations beyond
proportionality, such as quadratic (Shvarts & Abrahamson, 2019)
or trigonometric (Bongers, 2020) functions.

The observed dynamics can also inform the design of peda-
gogical virtual objects, including artificially intelligent tutoring
systems. Our results suggest that recurrence metrics may be a
useful means to characterize students’ intrinsic dynamics and
identify, predict, and thus cater to key moments of transition
during a learning task. For example, RQA metrics evidence the
conceptually contrasting rules articulated verbally by our case-
study learners. Nils’ arithmetic rule to make half conceptualized
a multiplicative relation between his hands and elicited a sharp
increase in RQA metrics; Liam’s qualitative rule to keep the right
hand higher did neither. Finally, our results bolster the impor-
tance of task and environment design and instruction in cultivat-
ing new perceptual orientations. At their broadest, the findings
support a renewed interest of learning scientists (Manches &
O’Malley, 2016) and cognitive developmental psychologists (Allen
& Bickhard, 2015) in the role of educational manipulatives as
mediating the enculturation of action into concepts.

Limitations of the present analysis include the modest sample
size of 39 participants, further impacted by the fact that not all
participants’ learning trajectories spent ample time in all three
defined phases. From a technical perspective, limitations such
as inconsistent contact with the touchscreen sometimes yielded
order gaps in the data. To accommodate this, we used a relatively
low sampling rate of 10 Hz and forward-filled missing data points
from the last recorded position. It is possible that this strategy
may have somewhat unevenly inflated recurrence or trapping
time measures if contact with the screen was more inconsistent
during certain phases of the task. Another technical challenge of
this dataset was that target (green) positions on the screen do
not reflect hands being at the same height, but rather one at half
the height of the other. In this study, we z-score normalized the
data from the two hands, but future research seeking to compare
between participants may want to rescale left-hand heights and
right-hand heights according to the target ratio. Finally, we note
that because determinism data did not meet the homoscedas-
ticity of variances assumption, the finding that the increase in
determinism at the onset of the Discovery phase was statistically
significant should be retested in future work. It will be important
to test for the patterns in RQA metrics identified through this
exploratory analysis in other embodied design learning contexts
without these limitations.

Putting the present study in dialogue with prior studies sug-
gests several avenues for future research. Stephen et al.’s work
on problem-solving observed a sharp rise and fall in entropy just
prior to discovery (Stephen, Boncoddo et al., 2009). Since the
present study focused on characterizing phases, it was not poised
to identify such a phenomenon except in the case studies, where
lack of recurrence obscured this metric. Across participants more

broadly, we saw an increase in entropy reflecting a decrease in
degree of order in the bimanual system. One possible interpreta-
tion of this result could be that fluent movement actually requires
dynamic fine-tuned adjustments that yield higher variability than
more exploratory movement. The entropy RQA metric warrants
closer attention in future research on embodied problem-solving.

Additionally, Kostrubiec et al. (2012) have shown that the
routes to learning new coordination patterns depend upon learn-
ers’ intrinsic dynamics, that is, their prior predispositions and
capabilities. The embodied design environment appears equipped
to accommodate learners’ idiosyncratic intrinsic dynamics, with
all learners attaining some degree of fluency by the end of
the task. However, further characterization of intrinsic dynamics
could further inform instructional design, for example in relation
to shift vs. bifurcation learning pathways. In our case studies,
Nils embodies the abrupt qualitative change of bifurcation with
his abrupt dynamic shift into fluency. Liam, meanwhile, shows
a slight gradual increase in trapping time and meanline in the
last few seconds of his performance. Might he, with more time,
have exhibited a gradual, smooth shift into greater fluency? In
future work, it would be of value to characterize the nature of
transition across participants. Charting the impact of intrinsic
dynamics could improve differentiated support for learners in
embodied design environments.

We close with a reflection on the broader utility of the RQA
method for interaction design researchers. RQA offers several
unique advantages. One is that it supports modeling the overall
dynamics of a system even without access to all components in
that system through phase space reconstruction (Coco & Dale,
2014). For example, we know from prior MIT-P research that gaze
patterns participate in learners’ growing fluency. We can study
the evolution of the hands-gaze-technology-tutor cognitive sys-
tem by using touchscreen data. The capacity to model dynamics
of an emergent system from some of its components makes RQA a
versatile research tool. Although not the focusal modality of this
analysis, it is worth noting that changes in visual fixation have
been implicated in the emergence of new perceptual structures
that organize movement in the MIT-P (Abrahamson et al., 2016).
One meaningful frontier in embodied design is that RQA can pro-
vide a means to study new perceptual structures in populations
where eye-tracking is not appropriate, such as in the learning of
blind students. This would allow for movement-based research
designs to be replicated with learners using nonvisual modali-
ties. Thus, RQA can support a more inclusive research agenda to
better investigate the microprocesses of embodied learning and
efficacy of embodied design for a greater diversity of learners.
Another affordance of RQA is its capacity to quantify lead–follow
dynamics based on the concentration of structures on the upper-
left or lower-right quadrants of the recurrence plot. This could, for
example, be used to examine whether the lead–follow dynamics
between hands and gaze evolve as fluency develops. Prior studies
have shown that the eye movements of tutors anticipate those
of learners (Shvarts & Abrahamson, 2019). RQA could provide
a means to test the presence and dynamics of these effects at
scale and compare contexts, such as between dyads performing at
different levels of fluency. RQA affords methodological traction on
phenomena that have previously been only qualitatively depicted.

This study provides a proof-of-concept for the utility of RQA
in tracking and analyzing the microprocesses that constitute con-
ceptual learning from a complex dynamical systems perspective.
Embodied-design research can use RQA for tracking conceptual
learning in the context of any interactive system where motor
actions are conceptually relevant and can serve to characterize
and potentially predict learning breakthroughs. Beyond embodied
design, any research context that centers embodied interaction
where time series can be collected may use RQA to identify the
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dynamics of that evolving system, including the system’s stability,
degree of order, and degree of coupling across components of
the system (parts of the body as in this example, data from two
different conditions, or partners in a team). Modern multimodal
data collection provides a wealth of complex time series such as
gaze, movement, or categorical data. RQA allows us to embrace
the complexity of these data rather than treat their variation as
noise to reveal new insights into the microprocesses of learning
and discovery.
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